Control of neuronal firing by dynamic parallel fiber feedback: implications for electrosensory reafference suppression.
نویسندگان
چکیده
The cancellation of self-generated components of sensory inputs is a key function of sensory feedback pathways. In many systems, cerebellar parallel fiber feedback mediates this cancellation through anti-Hebbian plasticity, resulting in the generation of a negative image of the reafferent inputs. Parallel fiber feedback involves direct excitation and disynaptic inhibition as well as synaptic plasticity on multiple time scales. How the dynamics of these processes interact with anti-Hebbian plasticity to shape synaptic inputs and provide a cancellation mechanism remains unclear. In the present study, we investigated the influence of parallel fiber feedback onto pyramidal neurons of the electrosensory lateral line lobe (ELL) in weakly electric fish under open loop conditions. We mimicked naturalistic parallel fiber inputs in an ELL brain slice by implementing an experimentally based model of this synaptic pathway using dynamic clamp. We showed that as parallel fiber activity increases, the effective input to ELL pyramidal neurons changes from net excitation to net inhibition, resulting in a non-monotonic firing response. Using a model neuron, we found that this robust non-monotonic response is due to a shift from balanced excitation and inhibition at low parallel fiber input rates, to dominant inhibition at high input rates. We then showed that this non-monotonic response provides a simple basis for negative image generation. Through changes in the mean activation rate of parallel fibers, the feedback can switch roles between enhancement and suppression of sensory inputs in a manner that is directly determined by the slope of the non-monotonic response curve.
منابع مشابه
Adaptive mechanisms in the elasmobranch hindbrain
The suppression of self-generated electrosensory noise (reafference) and other predictable signals in the elasmobranch medulla is accomplished in part by an adaptive filter mechanism, which now appears to represent a more universal form of the modifiable efference copy mechanism discovered by Bell. It also exists in the gymnotid electrosensory lateral lobe and mechanosensory lateral line nucleu...
متن کاملPlasticity in a cerebellar-like structure: suppressing reafference during episodic behaviors.
Detection of relevant sensory signals requires the filtering out of irrelevant noise, including noise created by the animal's own movements (reafference). This is accomplished in the electrosense of little skates (Raja erinacea) by an adaptive filter in the cerebellar-like electrosensory nucleus (dorsal nucleus) in the medulla. We have shown that electrosensory inputs reliably coupled to the re...
متن کاملMotor corollary discharge activity and sensory responses related to ventilation in the skate vestibulolateral cerebellum: implications for electrosensory processing
The dorsal granular ridge (DGR) of the elasmobranch vestibulolateral cerebellum is the source of a parallel fiber projection to the electrosensory dorsal nucleus. We report that the DGR in Raja erinacea contains a large percentage of units with activity modulated by the animal's own ventilation. These include propriosensory and electrosensory units, responding to either ventilatory movements or...
متن کاملDynamics of electrosensory feedback: short-term plasticity and inhibition in a parallel fiber pathway.
The dynamics of neuronal feedback pathways are generally not well understood. This is due to the complexity arising from the combined dynamics of closed-loop feedback systems and the synaptic plasticity of feedback connections. Here, we investigate the short-term synaptic dynamics underlying the parallel fiber feedback pathway to a primary electrosensory nucleus in the weakly electric fish, Apt...
متن کاملSuppression of Ventilatory Reafference in the Elasmobranch Electrosensory System: Medullary Neuron Receptive Fields Support a Common Mode Rejection Mechanism
Elasmobranch fishes have an electroreceptive system which they use for prey detection and orientation. Sensory inputs in this system are corrupted by a form of reafference generated by the animal's own ventilation. However, we show here that in the carpet shark, Cephaloscylium Isabella, as in two previously studied batoid species, this ventilatory 'noise' is reduced by sensory processing within...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 210 Pt 24 شماره
صفحات -
تاریخ انتشار 2007